
www.manaraa.com

Newcomb–Benford law and the detection of frauds in
international trade
Andrea Ceriolia,1, Lucio Barabesib, Andrea Cerasac, Mario Menegattia, and Domenico Perrottac,1

aDepartment of Economics and Management, University of Parma, 43125 Parma, Italy; bDepartment of Economics and Statistics, University of Siena, 53100
Siena, Italy; and cEuropean Commission, Joint Research Centre, 21027 Ispra, Italy

Edited by Alex Kossovsky, University of Panama, Panama City, Panama, and accepted by Editorial Board Member Donald B. Rubin October 30, 2018
(received for review April 17, 2018)

The contrast of fraud in international trade is a crucial task of
modern economic regulations. We develop statistical tools for
the detection of frauds in customs declarations that rely on the
Newcomb–Benford law for significant digits. Our first contribu-
tion is to show the features, in the context of a European Union
market, of the traders for which the law should hold in the
absence of fraudulent data manipulation. Our results shed light
on a relevant and debated question, since no general known
theory can exactly predict validity of the law for genuine empir-
ical data. We also provide approximations to the distribution of
test statistics when the Newcomb–Benford law does not hold.
These approximations open the door to the development of mod-
ified goodness-of-fit procedures with wide applicability and good
inferential properties.

statistical antifraud analysis | Newcomb–Benford law | customs fraud |
customs valuation | anomaly detection

The contrast of fraud in international trade, and the corre-
sponding protection of national budgets, is a crucial task of

modern economic regulations. To give an idea of the volumes
involved, in 2016 the customs duties flowing into the European
Union (EU) budget amounted to more than 20 billion euros and
provided about 15% of the total own resources of the EU. Huge
losses thus occur when the value of imported goods is under-
reported (e.g., ref. 1). Most statistical antifraud techniques for
international transactions fall in the class of unsupervised meth-
ods, with outlier detection and (robust) cluster analysis playing a
prominent role (2–5). The rationale is that the bulk of interna-
tional trade data are made of legitimate transactions and major
frauds may stand out as highly suspicious anomalies. Consider-
able emphasis is also put on procedures that provide stringent
control of the number of false positives (6), since substantial
investigations like the one reported in ref. 1 are demanding and
time consuming. A related crucial requirement is the ability to
deal with massive datasets of traders and to provide—as auto-
matically as possible—a ranking of their degree of anomaly. This
information is essential for the design of efficient and effective
audit plans, a major task for customs offices.

In this work we consider fraud detection through the
Newcomb–Benford law (NBL). This law defines a probability
distribution for patterns of significant digits in real positive num-
bers. It relies on the intriguing fact that in many natural and
human phenomena the leading—that is, the first significant—
digits are not uniformly scattered, as one could naively expect,
but follow a logarithmic-type distribution. We refer to refs. 7–
10 for an historical summary of the NBL, an extensive review of
its challenging mathematical properties, and a survey of its more
relevant applications.

Despite its long history, the mathematical and statistical chal-
lenges of the NBL have been recognized only recently. From
a mathematical perspective, appropriate versions of the law
appear in integer sequences, such as the celebrated Fibonacci
sequence (8) or the factorial sequence (11). The law also emerges
in the context of floating-point arithmetic (12), while a deep
probabilistic study was carried out by Hill (13). A seminal note

by Varian (14) suggested the idea that agreement with the NBL
could validate the “reasonableness” of data. Since then, it is
now rather well known—mainly due to the work of Nigrini (see
ref. 7, for a review of such studies)—that the NBL can be used as
a forensic accounting and auditing tool for financial data. The
law has been shown to be a valuable starting point for foren-
sic accountants and to be applicable in a number of auditing
contexts, such as external, internal, and governmental auditing.
It has also been found successful for identifying the presence
of misconduct in other domains, including the identification of
irregularities in electoral data (15, 16), campaign finance (17),
and economic data (18).

Although the cited advances may suggest applicability of the
NBL to international trade, there remain major unanswered
questions that we address in our work. The first one con-
cerns the trustworthiness of the NBL for genuine—that is,
nonfraudulent—transactions. As shown in ref. 19, no general
known theory can exactly predict whether the NBL should hold
in any specific application, whose data-generating process can-
not be known with certainty, even in the absence of fraud or
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other data manipulations; see also refs. 20–22 for related con-
cerns. Our first goal is then to provide insight on the suitability of
the NBL for modeling the distribution of digits of genuine trans-
action values arising in international trade. We use the Italian
import market as a specimen for our study, but our approach is
general and can be replicated for any country for which detailed
customs data are available. Knowledge of the conditions under
which the NBL should be expected to hold in the absence of data
manipulation is an essential ingredient for the implementation
of large-scale monitoring processes in which tens (or even hun-
dreds) of thousands of traders are screened in an automatic and
fast way with the aim of identifying the most suspicious cases. In
SI Appendix, section 7 we describe a web application that has
been developed to assist customs officers and auditors in this
screening task, which can be executed in full autonomy on their
own datasets. It may instead be very difficult to ascertain whether
anomaly should be attributed to fraud or to model failure if the
NBL does not provide a suitable model for genuine transactions;
see also ref. 23, p. 193, for a similar concern.

Our second goal is to deepen our knowledge of the empir-
ical behavior of NBL-conformance tests by investigating their
power under different contamination schemes. The adoption of
such tests for antifraud screening is based on the assumption
that fabrication of data closely following the law is difficult and
that fraudsters might be biased toward simpler digit distributions,
such as the discrete uniform or the Dirac. We also quantify the
corresponding false positive rates, to make explicit the different
and possibly conflicting facets that empirical researchers have to
balance in practice.

The third aim of our work is to provide corrections to test statis-
tics when the NBL does not hold. This is typically the case for
traders who operate on a limited number of products, so that there
is not enough variability in their transactions. Even if the NBL is
not a suitable model for genuine transaction digits, the confor-
mance tests based on our modified statistics have the appropriate
empirical size in the absence of data manipulation, while the usual
tests turn out to be potentially very liberal. We argue that, having
the required size under general trade conditions and being com-
petitive in terms of power, the conformance tests based on our
modified statistics are recommended. Therefore, they extend the
applicability of large-scale monitoring processes of international
trade data to a wider range of practical situations.

The NBL
Statistical Background. Let D1(x ),D2(x ), . . . , be the first, the sec-
ond, . . ., significant digit of the positive real number x . Let X be
a positive real random variable defined on the probability space
(Ω,F ,P). The NBL implies (and vice versa) that the following
joint probability function holds for each k ∈Z+,

ρk (d1, . . . , dk ) =P(D1(X ) = d1, . . . ,Dk (X ) = dk ) [1]

= log10

(
1 +

1∑k
l=1 10k−ldl

)
,

where d1 ∈{1, . . . , 9} and dl ∈{0, . . . , 9} for l = 2, . . . , k . A
practically important special case is that of the first two
significant digits (k = 2), for which Eq. 1 reduces to

ρ2(d1, d2) = log10

(
1 +

1

10d1 + d2

)
. [2]

Similarly, the marginal probability function of D1(X ) is

P(D1(X ) = d1) = log10

(
1 +

1

d1

)
,

while the marginal probability function of D2(X ) is

P(D2(X ) = d2) =

9∑
d1=1

log10

(
1 +

1

10d1 + d2

)
.

We refer to ref. 24 for a summary of the mechanisms that give
rise to NBL-distributed data in accounting and finance. Among
these, there are several statistical motivations for adopting the
NBL as a model for the digits appearing in genuine interna-
tional transactions. A major methodological basis relies on a
limit theorem derived by Hill (13), to which we refer for the
technical details. A key mathematical concept is that of a ran-
dom probability measure, which is a function P : Ω→M—where
M is the space of probability measures on R—defined on the
underlying probability space (Ω,F ,P). For each Borel set B
the function ω 7→P(ω)(B) is a random variable; that is, P(ω) is
a probability measure on R for each ω ∈Ω. Another important
related concept is that of a sequence of P-random M samples,
where M ∈Z+. It is a sequence (Xn)n≥1 of random variables
defined on (Ω,F ,P) such that, for each ω ∈Ω, the first M ran-
dom variables are drawn independently from the same random
probability distribution P1(ω), selected according to the random
probability measure P, the M subsequent random variables are
drawn independently from the same random probability distribu-
tion P2(ω), in turn selected according to the random probability
measure P, and so on. Hill’s limit theorem then states that, if P
satisfies some invariance conditions related to either the scale
or the base of measurement, for each M ∈Z+ the P-random
M -samples sequence (Xn)n≥1 converges to the NBL with prob-
ability one. That is, for each k ∈Z+ and for i = 1, . . . ,n , as
n→∞

card{i :D1(Xi) = d1, . . . ,Dk (Xi) = dk}
n

a.s.→ ρk (d1, . . . , dk ).

[3]

A second reason for adopting the NBL is that multiplicative
processes—which are at the heart of many financial data—
generate NBL-distributed data. More precisely, if (Xn)n≥1 is
a sequence of independent and identically distributed ran-
dom variables such that P(X1 = 0) = 0, as n→∞ the sequence
(
∏n

i=1 Xi)n≥1 converges to the NBL with probability one (theo-
rem 8.16 in ref. 8). It can be shown that convergence is extremely
fast since it is exponential in n (25). It is also remarkable that,
given two independent random variables X and Y only one of
which follows the NBL, the product XY is distributed according
the NBL provided that P(XY = 0) = 0 (theorem 8.12 in ref. 8).
Finally, NBL-distributed data may also originate from random
variables raised to integer powers. If X is an absolutely continu-
ous random variable, as n→∞ the sequence (X n)n≥1 converges
to the NBL with probability one (theorem 8.8 in ref. 8).

Relevance for International Trade. Our applied focus is on trans-
actions involving EU traders; we refer to SI Appendix, sections
3 and 7 for the institutional regulations supporting their analy-
sis. By international trade data we mean the data collected by
EU member states for imports and exports that are declared by
national traders and shipping agents using the form called the
Single Administrative Document (SAD). The value that we ana-
lyze for antifraud purposes is the “statistical value” reported in
each SAD, which also includes the costs of insurance and freight
(CIF) and is given in euros by taking into account the exchange
rate (26). Our interest is then on random variables X1, . . . ,Xn

defined on the product space

Xi =UiQi , i = 1, . . . ,n, [4]

where Ui and Qi are nonnegative random variables represent-
ing the (CIF-type) unit price in euros and the traded quantity
in transaction i . If we rephrase [3] in the context of trade,
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n corresponds to the number of transactions made by the trader
of interest, so that X1, . . . ,Xn is the available sample of transac-
tion values, and the ratio m =n/M is the corresponding number
of traded goods (provided that m is an integer).

There are different economic reasons suggesting that the dis-
tribution of the significant digits contained in X1, . . . ,Xn may,
under some conditions, be well approximated by the NBL. First,
markets are hit by specific shocks and show peculiar reactions
to common shocks (27). This, coupled with differences in the
trader size and product quality, generates different economic
processes for prices and quantities determination, which imply
in turn that the observed data of prices and quantities may be
described by different trader-specific probability distributions,
not exactly predictable in advance. In view of [3], it is then sen-
sible to anticipate good conformance to the NBL when a trader
operates by importing or exporting a sufficiently large number
of different goods, even if none of the product-specific marginal
distributions of digits follows the law. The economic literature
also shows that traders have different degrees of market power.
Trading operations are affected by market and country features,
such as different trade costs and different access to credit (e.g.,
ref. 28). Therefore, transactions made with different counter-
parties may be characterized by different economic processes,
yielding distributions for transaction values that can be con-
ceived to vary randomly from one product to another for each
trader. The significant-digit distribution in international trans-
actions can thus be expected to adhere to the NBL when the
trader makes a sufficiently large number of operations, with a
sufficiently large number of counterparties, possibly located in
different countries.

A Contamination Model for Fraud
The Model. We phrase our antifraud approach within the frame-
work of a trader-specific contamination model where each fraud
corresponds to an outlier. For this purpose, we need a slight
change in notation and we write nt for the number of transac-
tions made by trader t , which operates on mt distinct products
and for which the positive random variable X (t) now represents
a transaction value. We then define

π
(t)
k (d1, . . . , dk ) =P(D1(X (t)) = d1, . . . ,Dk (X (t)) = dk ),

and let T denote the total number of traders in the market.
For t = 1, . . . ,T and each k ∈Z+, the general form of our

contamination model is

π
(t)
k (d1, . . . , dk ) = (1− τt)Ψ(t)

k (d1, . . . , dk ) + τtΥ
(t)
k (d1, . . . , dk ),

[5]

where Ψ
(t)
k (d1, . . . , dk ) is the probability of observing

{D1(X (t)) = d1, . . . ,Dk (X (t)) = dk} in the absence of fraud,
Υ

(t)
k (d1, . . . , dk ) is the probability of the same event for a

manipulated transaction, and 0≤ τt ≤ 1 is the probability of
fraud for trader t . Although it is convenient to work in the digit
space through π

(t)
k (d1, . . . , dk ), model 5 has a counterpart in

the transaction space defined by X (t). The latter is given in SI
Appendix, section 1.

Model 5 provides a principled framework for antifraud anal-
ysis of international trade data. Indeed, trader t may be
considered a potential fraudster if the null hypothesis

H
(t)
0 : τt = 0 [6]

is rejected, in favor of the alternative H
(t)
1 : τt > 0, based on nt

independent copies of X (t), say X
(t)
1 , . . . ,X

(t)
nt .

A useful tractable version of contamination model 5 assumes
that the probability of observing a given k -ple of digits in a gen-
uine transaction of trader t depends on the trader features only
through the values of mt and nt ; that is,

Ψ
(t)
k (d1, . . . , dk ) := Ψ

(mt ,nt )
k (d1, . . . , dk ).

Therefore, for each k ∈Z+, the model becomes

π
(t)
k (d1, . . . , dk ) = (1− τt)Ψ(mt ,nt )

k (d1, . . . , dk )

+ τtΥ
(t)
k (d1, . . . , dk ), [7]

with [6] again stating the absence of fraud. Model 7 implies that
the random vector (D1(X (t)), . . . ,Dk (X (t))) is independent of
any other trader-specific random variable, given the values of
mt and nt . Although this structure is clearly an approximation,
it is coherent with the discussion about the economic elements
that make the NBL a plausible model for the digit distribution in
genuine international transactions.

A further bonus of models 5 and 7 is that they make clear the
antifraud advantages of our methodology over the often unin-
formative analysis of aggregated data, as given, for example, in
ref. 18. In the latter instance, for each k ∈Z+, the underlying
contamination model would be

πk (d1, . . . , dk ) = (1− τ)Ψk (d1, . . . , dk ) + τΥk (d1, . . . , dk ),

where the quantities involved are now constant for the whole
(product-specific) market. Testing the hypothesis that τ = 0 in
this restricted model requires a sample X1, . . . ,XT obtained
from T traders, for which just one replicate is available. How-
ever, the inferential conclusion that τ > 0 is much less informa-
tive than rejection of [6] for some t ∈{1, . . . ,T}. In fact, τ > 0
yields no information on the specific traders that are responsi-
ble for rejection and identification of the fraudsters must be left
to further nonstatistical investigations. Another notable advan-
tage is that models 5 and 7 acknowledge the existence of a
trader-specific propensity to fraud.

Testing the Absence of Fraud. The usual hypothesis of interest in
the antifraud literature (7, 10) is

H
(t)
0 :π

(t)
k (d1, . . . , dk ) = ρk (d1, . . . , dk ), ∀ k ∈Z+, [8]

which corresponds to [6] when Ψ
(t)
k (d1, . . . , dk ) is the NBL. Sev-

eral statistics exist for testing [8] for a given value of k , the
simplest one being the χ2 statistic

V
(t)

{1,...,k}=
∑

d1,...,dk

(
N

(t)
k (d1, . . . , dk )−ntρk (d1, . . . , dk )

)
2

ntρk (d1, . . . , dk )
,

[9]

where N
(t)
k (d1, . . . , dk ) is the frequency of the k -ple (d1, . . . , dk )

in the sample of nt transactions for trader t . It is a standard
result that, as nt→∞, V

(t)

{1,...,k}
L→χ2

ν when [8] is true, with
ν= 9× 10k−1− 1. In practice only NBL marginals of low order
are analyzed. The two-digit version of [9], that is, V (t)

{1,2}, tests
the fit to the 2D marginal of the NBL given in [2], while the cor-
responding 1D marginal hypotheses are tested through V

(t)

{1} and

V
(t)

{2}, respectively.
In our empirical study we also consider the multiple-stage

approach proposed by Barabesi et al. (6) with the aim of intro-
ducing a more stringent control on the proportion of false
discoveries. This approach tests a decreasing sequence of lower-
dimensional marginals of the NBL through their exact
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D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
31

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806617115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806617115/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1806617115


www.manaraa.com

SE
E

CO
M

M
EN

TA
RY

ST
A

TI
ST

IC
S

PO
LI

TI
CA

L
SC

IE
N

CE
S

conditional distributions. Specifically, in the simple two-step ver-
sion that we consider here, the method of Barabesi et al. (6) first
tests the two-digit marginal 2 of the NBL by comparing V

(t)

{1,2}
to the quantiles of its exact distribution under the null, which are
approximated through an efficient Monte Carlo scheme. Then,
if the 2D NBL is rejected, the fit to the 1D marginals is tested
by V

(t)

{1} and V
(t)

{2}. These lower-dimensional tests use the exact

conditional distributions of V
(t)

{1} and V
(t)

{2}, given rejection of
the 2D hypothesis, instead of their marginal ones. Type-I error
rates are thus controlled at the prescribed level (e.g., 1%) at
each step of the procedure, both in the two-digit and in the
one-digit tests. Furthermore, the outcome on the one-digit tests
reveals which digit is responsible for nonconformance to [2].

Since χ2 tests may also have some shortcomings (ref. 10,
chap. 37), additional procedures not based on [9] and less for-
mal methods are considered in SI Appendix, sections 5 and 6.
Qualitative findings are similar in all cases. Nevertheless, for
our purposes it is instructive to look at the results for χ2 tests,
because their distribution (either exact or asymptotic) is known
under the NBL. We can thus look at the agreement between
the empirical and the nominal distribution of the test statistics
to assess whether genuine transactions actually follow the law,
that is, if Ψ

(t)
k (d1, . . . , dk ) in [5] (or Ψ

(mt ,nt )
k (d1, . . . , dk ) in [7])

is the NBL.

Adequacy of the NBL for Trade Data
Although the theoretical results sketched in the statistical back-
ground and the subsequent economic arguments broadly moti-
vate the adoption of the NBL as a sensible model for genuine
transactions in the context of international trade, it is unclear
how they may fit to empirical transactions whose generating
mechanism cannot be exactly known and obviously involves only
a finite number of terms. One goal of our study is then to pro-
vide evidence on the quality of the NBL assumption 1 to the
digit distribution of transaction values for noncheating traders
that operate in real international markets. For this purpose,
we assume that our contamination model holds with τt = 0 for
each trader. We also take [7] as a sensible and practically work-
able approximation to this model in the absence of a priori
information on the trader.

We simulate nonmanipulated statistical values, according to
definition 4, for T † “idealized” traders in each relevant config-
uration of trade represented by a pair (mt ,nt). For this aim,
we sample transactions with replacement from the Cartesian
product spaces

Xj =Uj ×Qj , j = 1, . . . ,G, [10]

where Uj = {u1, . . . , unj } andQj = {q1, . . . , qnj } denote the sets
of unit prices (CIF-type) and traded quantities, respectively,
originated in all of the market transactions involving good j , nj

is the number of such transactions, and G is the total number
of goods in the market. The details of the simulation algorithm
are reported in SI Appendix, section 2. In our experimental set-
ting the values of mt and nt are fixed by design, while in empirical
analysis we instead condition on the observed values of mt and nt

for the trader under scrutiny. We replicate genuine international
trading behavior in one specific EU market by picking unit price
and traded quantity at random from the database of one calendar
year Italian customs declarations, after appropriate trader and
product anonymization making it impossible to infer the features
of individual operators. Two databases of simulated transactions
(pseudo-datasets) similar to those analyzed in this work can be
accessed through SI Appendix, section 3, where their structure is
explained. A description of our code is also given in SI Appendix,
section 3.

For each idealized trader t and a chosen value of k , we com-
pare the observed distribution of digits to the theoretical NBL
values 1 through the test statistic V

(t)

{1,...,k}. This statistic will be

asymptotically distributed as χ2
ν if Ψ

(mt ,nt )
k (d1, . . . , dk ) is indeed

the NBL. Furthermore, its exact distribution under the k -digit
NBL hypothesis can be approximated to an arbitrary degree of
accuracy through the Monte Carlo approach of Barabesi et al.
(6). We thus take the discrepancy between the estimated distri-
bution of V (t)

{1,...,k}, computed by averaging over the T † Monte
Carlo replicates of t , and its reference null distribution, say
F

V
(t)
{1,...,k}

, as a measure of the adequacy of the NBL assumption

in model 7. Formally, let ζγ be the γ quantile of F
V

(t)
{1,...,k}

and

let IC denote the indicator function of a given set C . Our Monte
Carlo estimate is computed as

α̂=
1

T †

T†∑
t=1

I ]ζ1−α,+∞[ (V
(t)

{1,...,k}), [11]

for α in the usual range of significance levels. Although a value
of α̂ close to α does not imply that the empirical distribution of
V

(t)

{1,...,k} is well approximated by F
V

(t)
{1,...,k}

over all its support,

it tells us that the approximation is satisfactory for the purpose
for which V

(t)

{1,...,k} is computed in antifraud analysis. The insight
that we gain from our study is twofold. First, we shed light on the
trading configurations—represented in terms of pairs (mt ,nt)—
that ensure close agreement between Ψ

(mt ,nt )
k (d1, . . . , dk ) and

the NBL in the market from which all of the sets Uj and Qj

are obtained. Second, we explore the effect of sparseness of
digit counts on the distribution of V (t)

{1,...,k} when nt is small or
moderate.

The bulk of our results deal with the simple first-digit statistic
V

(t)

{1}, which is likely to be method of choice by many antifraud
practitioners in automated large-scale auditing processes. As
a reference, we also provide the estimated test sizes for the
two-stage (TS) version of the procedure of Barabesi et al. (6) and
for the two-digit statistic V

(t)

{1,2}. The former is intended to be
a reasonable compromise between simplicity of use and strong
reduction in the rate of false detections, while the latter is often
recommended in applications with not-too-small sample sizes
(ref. 7, p. 79). We estimate test sizes using [11] for a wide range of
pairs (mt ,nt), with mt ≤nt . The chosen grid represents the fea-
tures of some of the most relevant traders in the empirical analysis
of customs declarations. In fact, the importers for which nt < 50
cover less than 14% of the recorded transactions in our customs
database and an even smaller quota in terms of traded values.
Very big traders are not common: To give an idea, nt > 2,000
for less than 0.1% of the importers in the database, and almost
40% of the recorded transactions refer to traders with 50≤nt ≤
2,000. We present only the findings for the case α= 0.01, similar
conclusions being valid for other significance levels.

Table 1 displays the estimated sizes of the test of the first-
digit marginal hypothesis for both V

(t)

{1} (using the quantiles of its
asymptotic distribution) and TS. These estimates are computed
on T †= 85, 500 idealized noncheating traders, pooled across dif-
ferent scenarios with the same pair (mt ,nt). One striking feature
of the reported values of α̂ in Table 1 is that they vary consider-
ably according to the specific trading configuration. This result
clearly supports the conjecture that in a realistic market scenario
both mt and nt are crucial factors in determining the adequacy
of the NBL as a valid model for the empirical digit distribution
in the absence of data manipulation. If only one digit is consid-
ered, a sample size of nt = 50 transactions can be considered
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Table 1. Estimated test sizes (Eq. 11) for the first-digit statistic V (t)
{1}, using the asymptotic

quantile χ2
8,0.99, and for the TS version of the procedure of Barabesi et al. (6), based on

T† = 85, 500 Monte Carlo replicates for each configuration (mt , nt), with mt ≤ nt

No. of
mt

transactions Test 1 5 10 20 40 80 100 200 500

nt = 50 V (t)
{1} 0.053 0.027 0.018 0.014 0.011 — — — —

TS 0.024 0.003 0.001 0.000 0.000 — — — —
nt = 100 V (t)

{1} 0.071 0.045 0.027 0.016 0.012 0.011 0.011 — —
TS 0.049 0.013 0.004 0.001 0.000 0.000 0.000 — —

nt = 200 V (t)
{1} 0.094 0.069 0.047 0.026 0.016 0.012 0.011 0.010 —

TS 0.070 0.035 0.013 0.003 0.001 0.000 0.000 0.000 —
nt = 500 V (t)

{1} 0.132 0.126 0.097 0.062 0.031 0.017 0.016 0.012 0.010
TS 0.103 0.084 0.049 0.017 0.003 0.000 0.000 0.000 0.000

Model 7 holds with τt = 0 for each trader. The nominal test size is α= 0.01.

sufficiently large to justify the asymptotic χ2
8 approximation to

the distribution of V (t)

{1} and the adoption of the NBL as a reason-

able model for Ψ
(mt ,nt )
1 (d1), provided that the number of traded

products is large as well (around 20, say). Similar findings hold
for all of the pairs (mt ,nt) taken into account in our experiment
and provide an empirical verification of the speed of convergence
to the NBL anticipated by the asymptotic framework of Hill’s
result 3. An interesting remark is that α̂ for V

(t)

{1} is closer to α
when mt =nt , thus suggesting that convergence in [3] is faster
when M = 1. On the other hand, TS yields a very conservative
test when the NBL provides a satisfactory model. This result is
hardly surprising, since TS tests the first-digit hypothesis at nom-
inal size α in the conditional distribution of V (t)

{1}, given previous
rejection of the two-digit NBL hypothesis. In SI Appendix, section
5, we also investigate the fit of the whole empirical distribution
of V (t)

{1} to the nominal χ2
8 distribution.

Our results point to the conclusion that the NBL is not a satis-
factory model when mt is much smaller than nt . This statement
is verified consistently over all market configurations and does
not depend on the specific testing methodology. Indeed, also the
potentially very conservative TS procedure can become consid-
erably liberal if mt�nt . The same is true for other adjustments
to V

(t)

{1} that control for multiplicity of tests among traders, not
reported here. We argue that lack of variability in the transac-
tions made by trader t is the main reason for the discrepancy
between the NBL and Ψ

(mt ,nt )
k (d1, . . . , dk ) when mt is small.

Whatever the interpretation, our simulation results confirm that

the asymptotic framework set by [3] does not hold if mt = o(nt),
requiring instead mt =O(nt). Our results also quantify how
much deleterious can be the effect of keeping mt fixed on the
distribution of test statistics. Indeed, they show that in this set-
ting an increase of the sample size nt worsens the situation, since
it points to a “wrong” asymptotic direction. The clear message is
then that standard conformance tests, such as V

(t)

{1,...,k}, should
not be used for antifraud purposes when mt�nt , because the
hypotheses 6 and 8 cannot be taken any longer to be equivalent.

We conclude this section with a glimpse of the performance of
the two-digit statistic V

(t)

{1,2}, when either the asymptotic quan-
tile χ2

89,0.99 or the exact 0.99 quantile from Barabesi et al. (6) is
used. The estimated test sizes, now based on T †= 28, 500 Monte
Carlo replicates for each configuration (mt ,nt), are reported
in Table 2. As expected, convergence to the χ2

89 distribution is
slower than convergence to χ2

8 in the one-digit case. The adop-
tion of exact quantiles should thus be preferred with V

(t)

{1,2},
except in the instance of large values of both nt and mt . Our
results confirm the relationship between accuracy of the NBL
approximation and the ratio mt/nt , suggesting mt ≥ 0.2nt as a
sensible rule of thumb when the exact quantiles are used. They
also provide a clue of the strategy to be adopted with more
complex large-k procedures.

Enemy Brothers: Power and False Positive Rate
When model 7 holds with τt > 0 for one or more traders, we
write TNF = {t : τt = 0} and TF = {t : τt > 0} for the sets cor-
responding to noncheating traders and fraudsters, respectively.

Table 2. Estimated test sizes (Eq. 11) for the two-digit statistic V (t)
{1,2}, using the asymptotic

quantile χ2
89,0.99 (As) and the exact 0.99 quantile (Ex) from Barabesi et al. (6), based on

T† = 28, 500 Monte Carlo replicates for each configuration (mt , nt), with mt ≤ nt

No. of
mt

transactions Test 1 5 10 20 40 80 100 200 500

nt = 50 As 0.064 0.039 0.035 0.029 0.026 — — — —
Ex 0.040 0.017 0.013 0.011 0.010 — — — —

nt = 100 As 0.083 0.048 0.033 0.023 0.021 0.020 0.019 — —
Ex 0.068 0.032 0.019 0.013 0.011 0.010 0.010 — —

nt = 200 As 0.102 0.069 0.043 0.025 0.018 0.014 0.016 0.014 —
Ex 0.095 0.059 0.034 0.018 0.012 0.010 0.011 0.009 —

nt = 500 As 0.141 0.125 0.087 0.052 0.027 0.016 0.014 0.012 0.012
Ex 0.137 0.120 0.082 0.047 0.023 0.013 0.012 0.010 0.009

Model 7 holds with τt = 0 for each trader. The nominal test size is α= 0.01.
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Table 3. Uniform contamination model 12

ς = 0.05 ς = 0.10

Trade
τt = 0.2 τt = 0.5 τt = 0.8 τt = 0.2 τt = 0.5 τt = 0.8

configuration Test P FPR P FPR P FPR P FPR P FPR P FPR

nt = 50 V (t)
{1} 0.034 0.865 0.196 0.546 0.586 0.302 0.030 0.779 0.200 0.346 0.574 0.178

mt = 50 TS 0.002 0.000 0.008 0.000 0.154 0.013 0.000 1 0.019 0.000 0.133 0.007
nt = 100 V (t)

{1} 0.058 0.788 0.436 0.297 0.938 0.184 0.043 0.705 0.425 0.175 0.924 0.097
mt = 100 TS 0.004 0.000 0.070 0.054 0.574 0.003 0.002 0.667 0.063 0.000 0.539 0.002
nt = 200 V (t)

{1} 0.060 0.778 0.810 0.179 1 0.151 0.097 0.484 0.801 0.109 1 0.097
mt = 200 TS 0.006 0.500 0.356 0.000 0.964 0.002 0.005 0.444 0.345 0.003 0.959 0.004
nt = 500 V (t)

{1} 0.272 0.401 1 0.160 1 0.154 0.281 0.226 1 0.069 1 0.081
mt = 500 TS 0.028 0.263 0.932 0.000 1 0.004 0.029 0.065 0.928 0.000 1 0.000

Shown are estimated power (P) and false positive rate (FPR) for the first-digit statistic V (t)
{1}, using the asymptotic quantile

χ2
8,0.99, and for the TS version of the procedure of Barabesi et al. (6), based on T† = 10, 000 Monte Carlo replicates for each pair

(mt , nt). The nominal test size is α= 0.01.

Power (P) is defined as the proportion of traders in TF that
are correctly identified as potential fraudsters. The false positive
rate (FPR) is the proportion of rejections of the null hypothe-
sis 6 that turn out to be wrong, since they refer to traders that
belong to TNF. Both performance measures play a crucial role
when antifraud analysis is put into practice. In our simulations
we compare the results under different contaminant distributions
Υ

(t)
k (d1, . . . , dk ), with k = 2.
Our first contamination instance assumes that the first two

digits of τtnt transactions from trader t ∈TF are generated
according to the discrete uniform distribution on {10, . . . , 99}.
Therefore,

π
(t)
2 (d1, d2) = (1− τt)Ψ(mt ,nt )

2 (d1, d2) + τt
1

90
, [12]

for d1 ∈{1, . . . , 9} and d2 ∈{0, . . . , 9}. The uniform distribu-
tion provides an unfavorable scenario for fraud detection, since
Υ

(t)
2 (d1, d2) is then close to the NBL marginal probability 2

for most digit pairs (d1, d2). Our second contamination scheme
instead concentrates frauds on a specific digit pair, say (d̄1, d̄2),
randomly selected from the discrete uniform distribution on
{10, . . . , 99}. The contaminated model thus becomes

π
(t)
k (d1, d2) = (1− τt)Ψ(mt ,nt )

2 (d1, d2) + τtI{d̄1,d̄2}(d1, d2).

[13]

Although this Dirac-type contamination may at first sight appear
extreme, our experience with manipulated declarations is that
similar patterns may arise rather frequently among the transac-
tions found to be fraudulent, especially when contamination is
due to the attempt to circumvent threshold-depending duties,
either “ad valorem”—that is, computed as a percentage of
the declared value—or fixed. In fact, the attempt to declare
quantities below the threshold (or above it, according to the
specific regulation) typically produces a bias in the correspond-
ing values similar to that represented by a Dirac-type model.
Other instances of contamination are considered in SI Appendix,
section 4.

We consider the simplified case where τt is the same for
each t ∈TF. We take τt = 0.2, 0.5, 0.8, to represent three increas-
ing levels of individual propensity to fraud. We also define the
proportion of fraudsters in the whole market as

ς =
card(TF)

card(T )
,

where T = TNF

⋃
TF is the set of all traders. We fix ς = 0.05, 0.1,

to investigate the effect of different degrees of fraud diffusion
in the market. Our estimates of P and FPR are based on T †=
10, 000 idealized traders, independently generated in each config-
uration. Nonmanipulated transactions are again simulated with
the algorithm described in SI Appendix, section 2. We restrict our
analysis to the market configurations for which the NBL approx-
imation to Ψ

(mt ,nt )
2 (d1, d2) is good, and the empirical test sizes

closely match the nominal one, to avoid confounding between
power and lack of fit. We give results only for the configurations
with mt =nt . Pairs where mt is of the same order of magnitude
as nt yield qualitatively similar findings and are not reported.

Table 3 shows the estimated values of P and FPR under the
uniform contamination model 12 for V

(t)

{1}, using the asymp-
totic quantile χ2

8,0.99, and for the TS version of the procedure of
Barabesi et al. (6). Not surprisingly, the detection rates are low in
the case of sporadic contamination (τt = 0.2). It is apparent that
no statistical method can be expected to have high power against
“well-masked” frauds, unless the number of contaminated trans-
actions becomes relatively large. Indeed, it is clearly seen that P
rapidly grows with both τt and nt , leading to almost sure detec-
tion of fraudsters even through the potentially very conservative
TS procedure (e.g., when τt = 0.8 and nt ≥ 200). Both methods
thus prove to be able to identify the traders belonging to TF if
there is enough information on the contaminant distribution in
the available data, also in the unfavorable framework provided
by [12]. The value of FPR is much higher with V

(t)

{1}, as expected,
except in some instances of low contamination, where the num-
ber of hypotheses 6 rejected by TS is very small and the estimate
of FPR is overwhelmed by its sampling variability. The choice
between V

(t)

{1} and TS should then depend on the user’s atti-
tude toward FPR and toward the power reduction implied by
TS in situations of intermediate contamination. The value of ς
does not have a major impact on P, thus suggesting that our pro-
cedures can be equally effective in detecting isolated fraudsters
and more diffuse illegal trading behavior. However, a consider-
able increase in FPR is to be expected in the former situation,
especially for V (t)

{1}.
Table 4 repeats the analysis under the Dirac-type scheme

13. The contaminant distribution is now well separated from
Ψ

(mt ,nt )
2 (d1, d2) and both methods generally have excellent de-

tection properties, with some minor differences only in the
problematic case τt = 0.2. However, FPR is much higher for
V

(t)

{1}. In such contamination frameworks the TS procedure thus
comes closer to performing like an “ideal” test, leading to the
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Table 4. The same as Table 3, but now for contamination model 13

ς = 0.05 ς = 0.10

Trade
τt = 0.2 τt = 0.5 τt = 0.8 τt = 0.2 τt = 0.5 τt = 0.8

configuration Test P FPR P FPR P FPR P FPR P FPR P FPR

nt = 50 V (t)
{1} 0.712 0.218 0.998 0.199 1 0.184 0.696 0.121 0.996 0.092 1 0.108

mt = 50 TS 0.520 0.763 1 0.002 1 0.002 0.555 0.005 1 0.003 1 0.001
nt = 100 V (t)

{1} 0.876 0.189 1 0.188 1 0.145 0.891 0.095 1 0.083 1 0.081
mt = 100 TS 0.972 0.008 1 0.004 1 0.000 0.980 0.001 1 0.003 1 0.001
nt = 200 V (t)

{1} 0.972 0.169 1 0.167 1 0.150 0.967 0.091 1 0.079 1 0.076
mt = 200 TS 1 0.004 1 0.006 1 0.000 1 0.002 1 0.002 1 0.000
nt = 500 V (t)

{1} 1 0.171 1 0.158 1 0.176 1 0.078 1 0.094 1 0.071
mt = 500 TS 1 0.006 1 0.000 1 0.000 1 0.002 1 0.003 1 0.003

identification of most potential fraudsters with a very small
number of false alarms. The effect of ς is still minor on P, while
it is more noticeable on FPR for V (t)

{1}.

Corrections to Goodness-of-Fit Statistics
We now focus on the trading configurations for which the NBL
does not provide a satisfactory representation of the genuine
digit distribution Ψ

(mt ,nt )
k (d1, . . . , dk ), that is, when mt�nt . In

this case, the reported distributional results are no longer valid
for V (t)

{1,...,k} or for the exact Monte Carlo approach of Barabesi

et al. (6). The true probability Ψ
(mt ,nt )
k (d1, . . . , dk ) should

replace the NBL version of π(t)
k (d1, . . . , dk ) in [9] to obtain valid

tests of hypothesis 6. Since Ψ
(mt ,nt )
k (d1, . . . , dk ) is unknown, we

resort to our Monte Carlo algorithm for simulating nonfraudu-
lent transactions and we compute a model-free approximation to
the null distribution function of V (t)

{1,...,k}. This approximation is
then used to obtain a test of [6]. Similar testing procedures have
proved to be useful in other domains, in the case of correlated
observations and other distributional misspecifications (e.g.,
ref. 29 and the references therein).

If t is the trader of interest, let t∗ be an idealized noncheating
trader such that t∗ 6= t , while mt∗ =mt and nt∗ =nt . The set of
transactions for trader t∗ is randomly generated according to the
algorithm described in SI Appendix, section 2, and the resulting
statistical values are collected in vector x (t∗), say. Correspond-
ingly, let V (t∗)

{1,...,k} be the test statistic 9 computed for trader t∗.
Under model 7, the significant-digit random variables associated
to the elements of x (t∗) can be considered as independent copies
of those associated to the elements of X (t), in the absence of data
manipulation. We thus estimate the unknown null distribution
function F

V
(t)
{1,...,k}

as a Monte Carlo average over T ∗ replicates

of t∗. This yields

F̂
V

(t)
{1,...,k}

(v) =
1

T ∗

T∗∑
t∗=1

I ]−∞,v ](V
(t∗)
{1,...,k}), [14]

for v ∈R+, and

ζ̂γ = inf

{
v : F̂

V
(t)
{1,...,k}

(v)≥ γ
}

for the corresponding estimate of the γ quantile. Therefore, we
reject hypothesis 6 at nominal test size α, and we consider trader
t a potential fraudster, if

v
(t)

{1,...,k}> ζ̂1−α, [15]

where v
(t)

{1,...,k} is the observed value of V (t)

{1,...,k}.

Motivated by large-scale applications, Efron (30) describes a
related methodology for empirically estimating a null distribu-
tion when the standard theoretical model (such as the NBL in
the case of digit counts) does not hold. This approach uses the
available data to estimate an appropriate version of the distri-
bution of the test statistic under the null hypothesis. However,
it is apparent that empirical null estimation is not directly fea-
sible when recast in the framework of models 5 and 7. One
reason is that the method generally requires a known parametric
form for the null distribution, whose parameters are then esti-
mated from the available realizations of the test statistic. Even
more fundamentally, in our applied context there is no guaran-
tee that the proportion of genuine transactions is large for each
trader, that is, that τt is small for each t in models 5 and 7,
thus violating a key assumption for empirical null estimation (ref.
30, p. 98).

On the other hand, the proportion of transactions that involve
manipulated data and their impact on F̂

V
(t)
{1,...,k}

is arguably small

when considering the Cartesian products defined in Eq. 10. First,
both Uj and Qj are not trader specific, since they contain all
of the transactions in the market for the corresponding good,
and the resulting idealized transactions are further aggregated
to obtain the required basket of nt transactions on mt products.
Second, as already reviewed in the statistical background, an
intrinsic robustness property of the NBL specification of our con-
tamination model arises from decomposition 4, since the product
of independent random variables follows the NBL if only one
of the factors does, regardless of the other factors (ref. 8, p.
188). We may thus expect a reduction in the contamination effect
produced by a manipulated element of Uj (respectively, Qj ),
after multiplication by a genuine element of Qj (respectively,
Uj ). Third, if the NBL does not hold, the contaminant distri-
bution Υ

(t)
k (d1, . . . , dk ) for a trader t may not be too far from

the genuine distribution Ψt′(d1, . . . , dk ) for some other trader
t ′ 6= t , which further reduces the degree of anomaly of the cor-
responding realizations in the whole market. We thus see our
estimate F̂

V
(t)
{1,...,k}

as the outcome of an extended null estima-

tion approach, where F
V

(t)
{1,...,k}

is estimated by exploiting all

of the potential samples that could have been observed given
the realized transactions in the market. Since the cardinality of
this sample space is very large, we finally resort to Monte Carlo
simulation for approximating the extended empirical null.

Table 5 reports the estimated sizes α̂ for different values of
nt and for mt = 1, when test 15 is performed at α= 0.01 on
the same sets of t = 1, . . . , 85, 500 idealized traders already con-
sidered in Table 1, and the Monte Carlo average in [14] is
computed on T ∗= 10, 000 independent replicates for each value
of nt . The analysis for the case mt = 5 is given in SI Appendix,
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Table 5. Estimates of test size, P, and FPR using modified procedures 15 and 16, with
T∗ = 10, 000, for different values of nt and for mt = 1

Uniform contamination (Eq. 12) Dirac-type contamination (Eq. 13)

No. of
τt = 0 τt = 0.5 τt = 0.8 τt = 0.5 τt = 0.8

transactions Test α̂ P FPR P FPR P FPR P FPR

nt = 100 V (t)
{1} 0.071 0.414 0.716 0.928 0.600 1 0.579 1 0.572

Test 15 0.010 0.000 1 0.000 1 0.850 0.167 1 0.180
Test 16 0.011 0.350 0.329 0.864 0.179 0.990 0.161 1 0.144

nt = 200 V (t)
{1} 0.094 0.812 0.683 1 0.630 1 0.648 1 0.634

Test 15 0.010 0.000 1 0.000 1 0.878 0.157 1 0.187
Test 16 0.012 0.678 0.213 0.934 0.182 0.998 0.153 0.992 0.175

nt = 500 V (t)
{1} 0.132 1 0.719 1 0.714 1 0.708 1 0.717

Test 15 0.010 0.004 0.983 0.000 1 0.776 0.173 1 0.154
Test 16 0.010 0.894 0.189 0.938 0.149 0.996 0.171 1 0.143

The estimated test sizes for V (t)
{1} are also given as a reference. The nominal test size is α= 0.01. The number

of independent idealized traders in each market configuration is T† = 85, 500 for procedure 15 and T† = 10, 000
for procedure 16, P and FPR. ς = 0.05 when computing P and FPR.

section 5. In all instances, comparison with the estimated sizes of
the liberal χ2

8 test (copied from Table 1) shows that the improve-
ment provided by our procedure is paramount. The appropriate
size is also reached when nt grows, while mt is kept fixed. There-
fore, our approach provides a valid test of [6] even when the
asymptotic framework does not comply with the requirements of
Hill’s limit theorem.

We then compute P and FPR for test 15, under the uni-
form contamination model 12 and the Dirac-type contamination
scheme 13, using the same sets of t = 1, . . . , 10, 000 idealized
traders already considered in Tables 3 and 4. For simplicity, we
restrict our analysis to ς = 0.05 and τt = 0.5, 0.8, similar quali-
tative conclusions being reached in the other cases. The results
are again reported in Table 5 and in SI Appendix, section 5, for
mt = 1 and mt = 5, respectively. We see that test 15 can have
severe difficulties in discriminating between TF and TNF, unless
Ψ

(mt ,nt )
k (d1, . . . , dk ) and Υ

(t)
k (d1, . . . , dk ) are well separated or

τt is close to one. One reason for the observed loss of power
is the large number of goods that are potentially involved in
the Monte Carlo estimation process. Indeed, mt∗ =mt for each
idealized trader t∗ contributing to [14], but the specific goods
for which the digit distribution is obtained usually vary from
trader to trader. This variability inflates the quantile estimate ζ̂γ ,
especially when the ratio nt/mt increases.

We can obtain an improved estimate of the required quantile
ζγ by adopting a refined version of model 7. In this specifica-
tion the genuine digit distribution depends not only on mt , but
also on the specific set of goods, say Gt , dealt with by trader
t . Consequently, we now generate the behavior of T ∗ ideal-
ized noncheating traders t∗ with the constraint that Gt∗ =Gt .
Let F̃

V
(t)
{1,...,k}

denote the corresponding Monte Carlo estimate

of F
V

(t)
{1,...,k}

, computed as in [14]. Then,

ζ̃γ = inf

{
v : F̃

V
(t)
{1,...,k}

(v)≥ γ
}

and hypothesis 6 is rejected at nominal test size α if

v
(t)

{1,...,k}> ζ̃1−α. [16]

The number of ways in which a basket of mt products can be
selected out of G possible goods will be huge in any real-world
scenario. Computation of ζ̃γ thus becomes trader specific and
cannot be automated before knowing the exact composition of

Gt , differently from ζ̂γ , which depends only on the pair (mt ,nt).
Nevertheless, estimation time is still acceptable for routine appli-
cation of the methodology. For instance, in our experiment
computation of ζ̃γ using T ∗= 10, 000 replicates takes on average
less than 0.5 s for a trader t with nt = 200 and mt = 5.

The performance of the refined test procedure 16 is displayed
in Table 5 (for mt = 1) and in SI Appendix, section 5 (for mt = 5).
All of the estimated sizes are very close to the nominal tar-
get α= 0.01 and similar to those obtained through [15]. Power
values are comparable for the three reported tests when the
genuine and the contaminant digit distributions are well sepa-
rated. However, our proposals are still preferred since their FPR
is considerably lower than for V

(t)

{1}. It is in the case of inter-
mediate contamination, as under the uniform model, that the
refined estimator ζ̃γ shows much higher efficiency than ζ̂γ . In
this instance rule 16 ensures that the reduction in power with
respect to the χ2

8 test is minor, while keeping considerably lower
values of FPR. We thus conclude that, having the appropriate
size and power properties comparable to those of the liberal
standard procedure, our modified tests 15 and 16 are recom-
mended whenever the attained levels of FPR can be tolerated in
practice.

Case Studies
To illustrate the use of the proposed procedure and its abil-
ity to detect relevant value manipulations, we first discuss the
case of a trader extracted from an archive of fraudulent decla-
rations provided by the Italian customs after appropriate data
anonymization. The same archive was also used in ref. 6. The
trader under scrutiny has nt = 648 import transactions on mt =
38 products from January 2014 to June 2015. The quantities and
values appearing in the declarations of the three most traded
products (not labeled for confidentiality reasons) are repre-
sented as (red) solid circles in the scatter plots of Fig. 1. The
information displayed in such scatter plots is the input for some
commonly adopted (robust) regression techniques aiming at the
automatic detection of value frauds in customs data; see, e.g.,
ref. 31 and SI Appendix, section 7 for further details. However,
the plots for this trader do not provide clear evidence of substan-
tial undervaluation or of other major anomalies, although two
of the declarations displayed in Fig. 1, Center were found to be
fraudulent after substantial investigation. Our testing procedure
instead produces a strong signal of contamination of the digit
distribution. In fact, restricting for simplicity to the first digit,
we obtain v

(t)

{1}= 62.6 and ζ̂0.99 = 27.3, based on T ∗= 10, 000
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Fig. 1. Quantity-value scatter plots for the three most traded products by an Italian operator convicted for two false declarations. The transactions made
by this trader are represented as (red) solid circles.

simulated traders with the same values of mt and nt . By apply-
ing rule 15, we can thus conclude that hypothesis 6 can be safely
rejected when the focus is shifted from individual transactions,
as in Fig. 1, to the whole trader activity, as in our test.

The strength of evidence against the null may suggest the exis-
tence in the administrative records of this trader of a larger num-
ber of manipulated declarations than the two already detected.
It also suggests that our method could be helpful in providing
authorities with evidence of potential fraud among traders not
previously classified as fraudsters or even not considered as sus-
picious. In view of contamination models 5 and 7, and of our
simulation results, we expect this information gain to be higher
in the case of serial misconduct. Additional investigations for this
trader are given in SI Appendix, section 6. Although all methods
point to the same conclusion, we remark that simple graphical
tools for conformance checking—such as histograms—require
substantial human interpretation and thus cannot be routinely
applied on thousands of traders.

We now move to (anonymized) data provided by the customs
office of another EU member state, not disclosed for its specific
confidentiality policy, that we label as MS2. The data were col-
lected in the context of a specific operation on undervaluation,
focusing on a limited set of products traded by fraudulent oper-
ators that have systematically falsified the import values. The
traders classified as nonfraudulent were audited by the customs
officers of MS2 and no indications of possible manipulation of
import values were found. Although the absence of fraud can
never be anticipated with certainty, we can thus place good con-
fidence on these statements of genuine behavior. In SI Appendix,
section 6 and Table S7 we provide empirical investigations of the
first-digit distribution of the 15 traders in this small benchmark
study for which nt ≥ 50, as in our simulation experiments. We
apply test 16 instead of test 15, since the available database is lim-
ited to a basket of fraud-sensitive products, and we keep α= 0.01
and T ∗= 10, 000 for each observed pair (mt ,nt). We give the
estimated P value of each test, computed as 1− F̃

V
(t)
{1}

(v
(t)

{1}),

and—as a reference—the asymptotic P value from the χ2
8 dis-

tribution that assumes validity of the NBL. It can be seen that
our approach gives very good results, both when applied to
fraudsters—it clearly rejects the hypothesis of no contamination
for five traders—and in the case of genuine behavior—none of
the supposedly honest traders is flagged by our test at α= 0.01.
Therefore, this study supports the claim that our methodology
can be an effective aid to the preparation of the audit plans
of customs services, given its ability to point to potential serial
fraudsters, in agreement with current guidelines for the customs
modernization process (32). We finally note the beneficial effect
of our correction for one supposedly honest trader shown in
SI Appendix, Table S7, whose small basket of traded products
may imply spurious deviation from the NBL when the classic χ2

8

approximation is used. An extreme example of this effect is also
shown in SI Appendix, section 6.

Discussion
We have developed a principled framework for goodness-of-fit
testing of the NBL for antifraud purposes, with a focus on cus-
toms data collected in international trade. Our approach relies
on a trader-specific contamination model, under which fraud
detection has close connections with outlier testing. We have
given simulation evidence, in the context of a real EU market,
showing the features of the traders for which we can expect the
genuine digit distribution to be well approximated by the NBL.
Our simulation experiment is an empirical study addressing this
issue in detail in the context of international trade, where the
contrast of fraud has become a crucial task and substantial inves-
tigations are often demanding and time consuming. We have also
provided simulation-based approximations to the distribution of
test statistics when the conditions ensuring the validity of the
NBL do not hold. These approximations open the door to the
development of goodness-of-fit procedures with good inferential
properties and wide applicability.

Our methodology is general and potentially applicable to any
country, or year, for which detailed customs data are available.
Being mostly automatic, it is suited to be implemented in large-
scale monitoring processes in which thousands of traders are
screened to find the most suspicious cases. It can also be a
valuable aid to the design of efficient and effective audit plans.
Although we expect our general guidelines to remain valid in
other empirical studies, the specific quantitative findings may
clearly vary from one country (year) to another.

A bonus of our contamination approach is that it makes clear
the setting in which statistical antifraud analysis takes place.
Our conformance testing procedures mainly aim at the detection
of serial fraudsters, for which information accumulates in the
corresponding transaction records. The generation of low-price
clusters of anomalous transactions is a typical consequence of
this cheating behavior, and robust clustering techniques can also
be used for its detection (e.g., ref. 4). However, rejection of our
goodness-of-fit null hypotheses often provides more compelling
evidence of fraud, also because it may not be easy to identify
the low-price clusters that actually correspond to illegal declara-
tions. Testing conformance to the NBL, or to another suitable
distribution for genuine digits, thus shifts the detection focus
from individual transactions to the full set of data from each
trader.

A word of caution concerns the fact that not all possible
frauds can be detected by our method, even when we restrict
to manipulation of transaction values. For instance, we cannot
expect any statistical procedure (including our own proposal)
to have high power against data fabrication methods that pre-
serve the validity of the NBL, at least approximately, and against
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occasional frauds for which statistical tests are not powerful
enough. Therefore, we do not see our methodology as the ulti-
mate antifraud tool, but as a powerful procedure to be possibly
coupled with additional information. We support integration of
the signals provided by our method with those obtained through
alternative statistical techniques and with less technical model-
free analyses—such as those developed in refs. 7 and 10—that
can be applied on a restricted number of traders. Indeed, we
see our approach as a suitable automatic tool for selecting the
most interesting cases for additional qualitative and quantitative

investigations, while ensuring control of the statistical properties
of the adopted tests.
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